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Nonlinear magnetic stochastic resonance: Noise-strength–constant-force diagrams
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Signal-to-noise properties of a periodically driven noisy magnetic bistable system—superparamagnetic par-
ticles with uniaxial anisotropy—are investigated in the framework of the Fokker-Planck equation solved both
analytically and numerically. The system is subject to a constant~bias! field that imparts even harmonics into
its low-frequency magnetic spectrum. A comparative study of the linear and quadratic susceptibilities and
stochastic resonances~SR! is carried out. We show that the quadratic SR is much sharper than the linear one
and unlike the latter is essentially frequency dependent.@S1063-651X~97!10411-1#

PACS number~s!: 05.40.1j, 75.50.Tt, 05.45.1b
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INTRODUCTION

The phenomenon called in a modern thesaurusthe sto-
chastic resonance~SR! has by now shaped up into a gene
concept appealing to a great many researchers in div
fields. Having been taken into collective development, it h
proved to be rather fruitful. By now the number of papers
stochastic resonance is in the hundreds, and overall rev
articles@1–3# are beginning to appear.

SR is a kinetic effect universally inherent to bistable
multistable dynamic systems with white or color noise.
main manifestation is the appearance of a maximum on
noise intensity dependences of the signal-to-noise ratio
system subject to a weak driving force. Essentially, this
havior is due to the presence of an exponential Kramers t
t}exp(DU/D) of the system switching between ener
minima; hereDU is the effective height of the energy barri
separating the potential wells andD is the noise intensity.

For the most part, magnetic systems are multista
Therefore, the idea of the magnetic stochastic resonance
emerged in a natural way first as a theoretical matter@4,5#
~see also Ref.@6#!, shortly afterward supported by exper
mental evidence@7,8#. In Refs. @9# and @10#, an accurate
approach to the magnetic SR in the framework of the lin
response theory was developed.

Micromagnetism as defined by Brown@11# is the branch
of magnetic science that studies the properties of fine fe
magnetic particles. For such particles in the size range;10
nm the height of the internal magnetic anisotropy barr
DUa is comparable to the thermal excitation strengthkBT.
Due to that, the magnetic momentm of a single-domain par-
ticle begins to spontaneously wander between two~uniaxial
case! or numerous~cubic case! anisotropy energyUa minima
@12,13#. This motion manifests itself as a magnetic relaxat
with the characteristic timet}exp(DUa /kBT), i.e., the well-
known superparamagnetismphenomenon that has been u
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der study for quite some time, see Ref.@14# for a state-of-
the-art review.

The meaning of the generic SR terms as applied t
single-domain superparamagnetic particle~or an assembly of
those! is apparent. The dynamic variable is connected to
orientation of magnetic moment, the background noise
thermal and thus white, and the excitation is created b
weak external harmonic magnetic fieldHp(t)5Hp0exp(iVt).
The signal is the responding dynamic magnetizationM (t) in
the direction ofHp and the signal-to-noise ratio is define
through the spectral power densityQ(v) of M (t) at some
given frequency. We remark that from the experimen
viewpoint all the quantities involved can be feasibly me
sured by conventional techniques.

In Ref. @7# the importance of a constant field~imposed on
the system along its anisotropy axis! on the magnetic SR is
demonstrated. First quantitative results on this effect in
superparamagnetic particle assembly are given in Ref.@10#.
The ‘‘constant force’’H enters the energy function as th
term 2m–H. For a uniaxial anisotropy, i.e., initially sym
metrical bistable system, the bias field removes the deg
eracy and makes the potential wells nonequivalent. T
gradual increase ofH enlarges this deformation and finall
transforms a two-well potential into a one-well one.

The bias-field effect has two main aspects of intere
First, it considerably affects the usual SR behavior de
mined by the linear responseM (t)}exp(iVt). Second, the
break of symmetry adds even terms into the frequency c
tent of M (t), which otherwise consists only of odd harmo
ics. Thus one gets an opportunity to examine a nonlin
response in its most simple~quadratic! form M (2)(t)
}Hp0

2 exp(2iVt). The latter is the subject of our particula
interest. Indeed, at least since the time of the boom in stu
of spin glasses, it is well known—see, for example, R
@15#—that nonlinear susceptibilities make a much more s
sitive tool to investigate static and dynamic properties
magnetic assemblies than the linear ones.

The goal of this paper is to consistently study the nonl
ear SR in a system of identical single domain~also known as
fine or nanosize! anisotropic ferromagnetic particles dis
persed in a solid neutral matrix. This is done by a nume
6400 © 1997 The American Physical Society
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56 6401NONLINEAR MAGNETIC STOCHASTIC RESONANCE: . . .
cally exact solution of the micromagnetic~Brown! equation
which grants a complete allowance for both magneto
namic and thermal noise effects. Besides its direct rang
application, the problem in question makes a case that c
tributes to the understanding of the generic SR behavior
bistable system subject to a constant force. In this aspec
results should be considered along with the general theo
ical treatment of nonlinear SR given in Ref.@16# and particu-
lar predictions on the nonlinear behavior of optical bista
systems@17# and a Josephson junction shorted by a sup
conducting loop@18#.

Actually, the body of the paper is divided into five se
tions. The first two discuss the static susceptibility and
details of the quadratic expansion of the time-depend
Brown kinetic equation, respectively. Thus, the relevant m
terial parameters and all the necessary mathematical sch
are introduced and explained. In Sec. III, the obtained fram
work is used to derive, calculate, and analyze the set of
dynamic susceptibilities, linear and quadratic, which are
basic quantities to deal with SR. Also, with the concept
the effective relaxation time, we propose a simple express
for the quadratic susceptibility, and give its justifications.
Sec. IV, in terms of the dynamic susceptibility the propert
of the linear magnetic SR in a bias field are discussed
Sec. V, we formulate the definition for a nonlinear SR a
present the dependences of the magnetic quadratic SR o
temperature and the bias field strength. By comparison w
the numerical results, we show that for the most part of
range of interest, the approximate expression of Sec.
works very well. When used, it yields the signal-to-noi
ratio in a compact form, revealing all its essential tempe
ture, bias-field, and frequency dependences.

I. STATIC QUADRATIC SUSCEPTIBILITY

In the presence of a probing fieldHp and a constant bia
field H, the orientation-dependent part of the energy funct
of a single-domain ferromagnetic grain is

U52Kv~ ê•n̂!22m@~ ê•H!1~ ê•Hp!#, ~1!

where ê and n̂ are the unit vectors of the particle magne
moment and anisotropy axis, respectively,K is the effective
anisotropy constant~essentially positive for the easy-ax
case!, andm5Iv is the magnitude of the magnetic mome
of a single-domain particle withI being its magnetization
andv its volume.

We focus on the longitudinal situation and assume t
the imposed fields are collinear and directed along the
isotropy axisn̂. Then the set of the angular variables reduc
to the polar angleq of ê with respect to n̂. Setting
cosq5(ê•n̂)5x, at Hp5const for the equilibrium distribu-
tion function of the particle magnetic moment one gets

W~ ê!5W~x!5Z21exp@sx21~j1jp!x#, ~2!

where the values of the internal~anisotropy! and external
magnetic energies are scaled with the thermal energy

s5Kv/T, j5mH/T, jp5mHp /T; ~3!
-
of
n-
a
ur

et-

e
r-

e
nt
-
es

e-
e
e
f
n

s
In

the
th
e
II

-

n

t
n-
s

hereafter we set the Boltzmann constantkB to unity. The
partition integral in Eq.~2! is

Z~s,j,jp!52pE
21

1

exp@sx21~j1jp!x#dx. ~4!

To avoid any confusion later on, we remark that und
adopted definitions, all the parameters, viz.,s, j, andjp are
essentially non-negative.

Expanding expression~2! to second order injp , one gets

W~ ê!5W0

11jpx1~1/2!jpx2

11jp^x&01~1/2!jp
2^x2&0

; ~5!

here the brackets labeled with 0 denote the averaging o
the ‘‘basic state,’’ i.e., the distribution

W0~x!5Z0
21exp~sx21jx! ,

Z0~s,j!52pE
21

1

exp~sx21jx!dx . ~6!

For an assembly of identical noninteracting particles, t
is, our model, the longitudinal magnetization assumes
form M5cm^x&, i.e., a single-particle contribution time
particle number concentrationc. Here the unlabeled angula
brackets denote the averaging with the distribution funct
W from Eq.~2!. When the perturbing~probing! field is weak,
one may present the magnetization as

M2M0~H !5xHp1x~2!Hp
2 , M0~H !5cm^x&0 , ~7!

thus introducing, along with the customary susceptibilityx,
the quadratic onex (2). Note that owing to the magnetizatio
saturation,x (2) must be negative.

On the other hand, using expansion~5!, one gets the rep-
resentation

^x&5^x&01jp@^x2&02^x&0
2#

1 1
2 jp

2@^x3&023^x2&0^x&012^x&0
3# . ~8!

From Eqs.~5!–~8! explicit relations follow:

x05~fI 2/K !sA, A~j,s!5^x2&02^x&0
2 , ~9!

x0
~2!5~fI 3/K2!s2B,

B~j,s!5 1
2 @^x3&023^x2&0^x&012^x&0

3# . ~10!

Hereafter, instead of the number concentrationc, the dimen-
sionless particle volume fractionf5cv is used. Note that by
definition

A5]^x&0 /]j, B5 1
2 ]2^x&0 /]2j. ~11!

In limiting cases, simple expressions for the coefficientsA
and B are available. For high temperatures (s,j!1) one
finds

A5~ 1
3 1 4

45s!2~ 1
15 1 544

11 025s!j2, B52~ 1
15 1 544

11 025s!j.
~12!
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6402 56RAIKHER, STEPANOV, GRIGORENKO, AND NIKITIN
The low-temperature asymptotics was obtained by Gara
@19#. Namely,

A5Ainter1Aintra5
1

cosh2j

~2s1j!

~2s2j!
1

1

~2s1j!2

for 2s2j@1 , ~13!

and the correspondingB may be found with the aid of defi
nitions ~11!. The two terms of the right-hand side of Eq.~13!
have clear meanings. The first one is caused by redistribu
of the particle magnetic moments between the poten
minima located atx561. It may be called theinterwell
contribution. The other is theintrawell one, and it accounts
for the field-induced orientation inside the deeper wellx51,
where atj@1 virtually all the magnetic moments dwell.

According to Eq.~8!, the quadratic term is determined b
the odd-rank moments of the equilibrium distribution fun
tion, and is absent if the latter is even inx. Thus, for the
existence ofx (2) the presence of a bias field in Eq.~1! is
mandatory. Otherwise, the next-to-linear response t
would be cubic in the probing field amplitude, see Refs.@20#,
for example.

In Fig. 1 the results of numerical evaluation of staticx
and x (2) are given for an assembly of uniaxial grains wi

FIG. 1. Static linear~a! and quadratic~b! susceptibilities for the
bias field IH /K 5 0.05 ~1!, 0.1 ~2!, 0.2 ~3!, 0.5 ~4!. Broken line
shows the limiting behavior forH50. Note the factor of 3 differ-
ence between the abscissa scales of the~a! and ~b! plots.
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their axes completely aligned. As the field strength grow
the maxima of the curves move to higher temperatures
qualitative explanation for this shift may be obtained fro
Eq. ~13!. We note that the field strongly affects the tempe
ture behavior of the coefficientAinter. At H50 the interwell
contribution is unity and entirely dominatesAintra. Then Eq.
~9! gives x}s}1/T, i.e., the Curie law shown by a dashe
line in Fig. 1~a!. For HÞ0, the termAinter in Eq. ~13! ac-
quires an exponential factor. Then, on the temperature
crease, an abrupt fallAinter}exp(22j) takes place. Forx it
means that the Curie law gives up, yielding a characteri
maximum. Sincej5mH/T, the higher is the field, the
greater is the temperature of the maximum. With furth
cooling, Ainter becomes negligible, and the control on th
behavior of x is overtaken by Aintra. The occurring
crossover—from the exponential to the power law
1/T—manifests itself as an inflection point at the leftmo
parts of the curves in Fig. 1~a!. The same qualitative ten
dency holds for the quadratic static susceptibilities, see
1~b!.

The discussed static responses are determined for
complete equilibrium. Due to this, they are the easiest
calculate but not at all easy to observe. Indeed, at low te
peratures the time needed to achieve the interwell equ
rium becomes exponentially large@21#.

II. QUADRATIC EXPANSION OF THE TIME-DEPENDENT
DISTRIBUTION FUNCTION

In a nonequilibrium situation, evolution of the distributio
functionW(ê,t) is governed by the rotary diffusion~Fokker-
Planck-like! equation. In the 1960’s Brown@22# specified it
for micromagnetic~fine particle! systems. He did this on the
basis of the well-known phenomenological Landau-Lifshi
Gilbert ~LLG! equation which describes the magnetodyna
ics of a single-domain particle in the absence of therm
fluctuations. In a compact vector form the Brown kine
equation is written@23#

2tD]W/]t5JWJ~U/T1 lnW!, ~14!

whereJ is the operator of infinitesimal rotations with respe
to the components ofê, the energy functionU is defined, for
example, by Eq.~1!, andtD}T21 is the reference time of the
internal rotary diffusion of the particle magnetic momen
The conventional representation for the diffusion time is

tD5st0 , t05I /2agK, ~15!

whereg is the electron gyromagnetic ratio. Heret0 is de-
fined through the precession damping parametera of the
underlying LLG equation; see Ref.@24#, for example. Quali-
tatively,t0 accounts for the damping effect of the spin-latti
interactions on the orientational motion ofê. Therefore,t0 is
the material parameter of a particular system. For us, it yie
the decay rate for the intrawell processes, i.e., those oc
ring near the bottom of the potential wells ofU(x). In the
presence of the bias field, the intrawell relaxation time mo
fies to

t intra5t0~11IH /2K !21. ~16!
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56 6403NONLINEAR MAGNETIC STOCHASTIC RESONANCE: . . .
The thermal noise strongly affects the relaxation p
cesses in the superparamagnetic system. At high temp
tures, when the presence of the potential wells is insign
cant (s&1), the magnetization relaxation time direct
coincides withtD , see Eq.~23!. In the low-temperature limit
(s@1), the magnetization reversal takes the form of int
well transitions, and its rate is described by the Ne´el relation

tN5tDexp~s!, ~17!

with tD playing the role of the preexponential factor. Th
time t0 is of a dynamic, not diffusion, origin, and due to th
does not depend explicitly upon temperature. It makes
convenient noise-independent time scale. Then,Vt0
emerges as a natural criterion with regard to which freque
V should be considered to be either high or low. For fer
magnetic particles the reference values oft0 are usually
taken@24–26# as 10210– 1029 s. Hence, all the frequencie
up to the range of at least several MHz may be treated
being low.

Let us assume that the probing fieldH1 varies harmoni-
cally,

Hp5 1
2 Hp0~eiVt1e2 iVt!, ~18!

and seek the solution of the uniaxial Brown equation~14! in
the form of a series

W~x,t !5
1

2p(
l 50

`
2l 11

2
^Pl&Pl~x!, ~19!

where ^Pl&, with Pl being the Legendre polynomial, is i
fact a conventional notation for the expansion coefficien
As has been mentioned, we restrict ourselves to the l
frequency conditionVt0!1. In this limit, the Larmor pre-
cession of the particle magnetic moment may be neglec
and Eq.~14! describes a well-overdamped angular oscilla
in the bistable potential~1!.

Substituting Eq.~19! into Eq. ~14!, and then integrating
over ê, one arrives at the pentadiagonal set of differen
recurrence relations for the mean Legendre polynomials

2tD

d

dt
^Pl&1 l ~ l 11!^Pl&22sF ~ l 21!l ~ l 11!

~2l 21!~2l 11!
^Pl 22&

1
l ~ l 11!

~2l 21!~2l 13!
^Pl&2

l ~ l 11!~ l 12!

~2l 11!~2l 13!
^Pl 12&G

2~j1jp!
l ~ l 11!

2l 11
@^Pl 21&2^Pl 11&#50 . ~20!

Taking into account that the dimensionless amplitudejp0
@see scaling~3!# of the probing field is small, the response
the periodically driven system may be found by the pert
bation method. To be able to obtain the quadratic susce
bility, we have to perform the pertinent calculation up to t
second order injp0. Dealing with the harmonic field~18!, we
introduce the time-independent complex amplitudes as

^Pl&2^Pl&05 1
2 ~bl

~1!eiVt1c.c.!1 1
4 ~bl

~2!e2iVt1c.c.!,
~21!
-
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where c.c. stands for complex conjugates. On substitu
this expansion into Eq.~20!, one gets the equation for th
complex amplitudes

2ikVtDbl
~k!1(

l 8
L l ,l 8bl 8

~k!
5jp0

l ~ l 11!

2l 11
@bl 21

~k21!2bl 11
~k21!#,

~22!

valid for the perturbationsbl
(k)}j0p

k from Eq. ~21!. The op-
eratorL̂ in Eq. ~22! is the pentadiagonal relaxational matr
whose definition follows from Eq.~20!. As usual, the right-
hand side of Eq.~22! contains the result of the precedin
iteration.

One remark concerning the zeroth order is worthwh
There one deals with the equilibrium quantities^Pl& which
can be found from the equation

(
l 8

L l ,l 8^Pl 8&050. ~23!

Its nontrivial solution is provided by the identitŷP0&051.
The corresponding term may be passed to the right-hand
of Eq. ~23! thus making this equation nonhomogeneous.
all the higher perturbation orders,b0

(k)50 identically.
The sets of the pentadiagonal recurrence relations~22!

and ~23! truncated at some large enoughl 5N, are solved
numerically with the aid of the generalized Thomas alg
rithm, see Ref.@27#, for example. Using this algorithm fo
backward sweeping, that is, from tail to head, yields a p
cedure which, being in fact equivalent to the continue
fraction method proposed by Risken@28#, is more feasible
for realization. Both methods provide any desired accur
just by varying the cutoff index numberN. In this sense we
call the solutions obtainednumerically exact.

III. DYNAMIC SUSCEPTIBILITIES

The numerically exact solution of Eqs.~22! and ~23! de-
termines the representation for the distribution function~19!
accurate up tojp0

2 . Using it in the reduced magnetization^x&
definition and with allowance for Eq.~7!, one can present the
magnetic response as a sum of the frequency-dependent
tributions as

M5M01 1
2 x~V!Hp0exp~ iVt !1 1

4 x~2!~2V!Hp0
2 exp~2iVt !

1c.c., ~24!

thus specifying the linear and quadratic complex susceptib
ties

x5
fI 2s

K
b1

~1! , x~2!5
fI 3s2

K2
b1

~2! . ~25!

Each of them is a function of the bias fieldj and describes
the harmonic of magnetization at the pertinent frequen
Note that in Eq.~24!, as in Eq.~21! above, we omit the
stationary contribution tox (2).

To facilitate understanding, let us recall the main featu
of the linear longitudinal susceptibility of a superparama
netic system. The general solution of the linear problem~22!
can be formally presented as the spectral expansion
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6404 56RAIKHER, STEPANOV, GRIGORENKO, AND NIKITIN
x5x0(
k51

`
wk

112iVtD /lk

, (
k51

`

wk51, ~26!

where the sets of the eigenvalues$lk% of the relaxational
operatorL̂ are introduced together with the weights$wk%
rendering the contributions of the eigenmodes to the lin
susceptibility. In Eq.~26! l1 is the lowest eigenvalue, and
is the only one that yields the rate of the interwell relaxatio
The corresponding relaxation time reads

t inter52t0 /l1 . ~27!

On the other hand, one can try to approximate the m
netization damping process by a single effective relaxa
time as

x5x0~11 iVteff!
21 . ~28!

In the low-frequency limit the exact and approximate susc
tibilities must coincide. Matching the expansions of Eq
~26! and ~28! for VtD!1, yields

teff5 (
k51

`

wktk , tk52tD /lk . ~29!

The last relationship is in fact the quantitative definition
teff . However, in practice it is more feasible to findteff from
the solution of the recurrence relation@9,29#

(
l 8

L l ,l 8Fl 852tD~^Pl P1&02^Pl&0^P1&0! ~30!

asteff5F1 /A.
For high temperatures (s,j!1) the effective relaxation

time of Eq.~29! reduces to

teff5tD . ~31!

In the low-temperature limit, Garanin@19# found a simplified
expression

teff5A21~Aintert inter1Aintrat intra!, ~32!

where the parametersA are defined by Eq.~13!, and the
temperature-independent timet intra is introduced by Eq.~16!.
The corresponding asymptotic form of the interwell rela
ation time~27! is provided by the formula

l15p21/2s3/2~12h2!$~11h!exp@2s~11h2!#

1~12h!exp@2s~12h2!#% , ~33!

obtained by Aharoni@21#; hereh5IH /2K.
In Fig. 2 we present the plot ofteff obtained from the

numerical solution of Eq.~30!. The coordinates used for thi
schematic representation are the dimensionless tempera
independent magnetic fieldj/s5IH /K and dimensionless
temperature 1/s. Note also the logarithmic scale of the ve
tical axis. The plateau ats&2 shows that at enhanced tem
peratures the relaxation time does not depend on the de
of the potential. At low temperatures, the effective time
strongly temperature dependent. The form of the surfaceteff
in the bands*5, i.e., reduced temperatures, is very speci
r

.

g-
n

-
.

f

-

re-

ils

.

At j50 and 1/s!1 it reduces totN , where the Ne´el relax-
ation time is defined by Eq.~17!. This yields the customary
superparamagnetic blocking model with its exponential
1/T behavior. A peculiar feature is the occurrence of a no
monotonic dependenceteff(1/s) when IH /K exceeds some
finite value. This fact was discovered in Refs.@29# and@19#,
where the evaluation gaveIH /K'0.34. Remarkably, the
similar inflection on the curves 2tD /l1 takes place@21# only
at IH /K close to 2. This gives a strong direct argument
favor of usingteff , and not 2tD /l1 as the effective relax-
ation time for the magnetization.

The temperature dependences ofx8 andx9 found by the
full numerical procedure@Eqs.~21!–~25!#, and with a simple
formula ~28! but a numerically exactteff , are given and
compared in Fig. 3 forVt051024. We remark that the ac
tual choice ofV does not matter as long as we deal in t
low-frequency range. However, the assumed value se
quite reasonable, since att0;1029 s it corresponds to the
dimensional frequency;104 Hz that is a convenient mea
surement range.

As one can see from Fig. 3, the agreement is rather go
Among all, this implies that in the low-frequency doma
one can propose a closed equation of the magnetization
tion

S teff

d

dt
11D ~M2M0!5x0Hp , ~34!

wherex0 is defined by Eq.~9!.
From Fig. 3 it follows that the presence of a bias fie

shifts the maxima of in- and out-phase components ofx in
opposite ways: the peaks of the real part move to the hig
noise strength region, whereas those of the imaginary p
display the reversed tendency. The behavior of the real
does not differ much from that of the static susceptibili
this is natural since theVt0 parameter is small. That is, w
observe the dependence of the factorA on j described when
discussing the static case. The imaginary part of the sus
tibility possesses an additional factor;Vteff and thus thex9
behavior is governed by the lowest barrier height, wh
goes down as the bias field grows.

FIG. 2. Integral relaxation time as a function of the dimensio
less temperature 1/s and bias field strengthj/s.
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From the general viewpoint, the ability of a relationsh
such as Eq.~34! to describe the higher harmonics of magn
tization is questionable. However, at least for semiquant
tive results, one can obtain a useful approximation forx (2).
For that, let us rewrite Eq.~34! as

S teff

d

dt
11D ~M2M0!5Hp

]M

]H
, ~35!

which actually means replacingM0 by M . Setting in accor-
dance with Eq.~24!

M5M01dM ~1!1dM ~2!,

dM ~1!5x0~11 iVteff!
21Hp , dM ~2!;Hp0

2 ,

from Eq. ~35! one gets the equation for the second-ord
correction:

S teff

d

dt
11D dM ~2!5Hp

]

]H
dM ~1!,

that finally yields

x~2!5 1
2 x0

~2!@~11 iVteff!~112iVteff!#
21, ~36!

FIG. 3. Real~a! and imaginary~b! parts of the linear dynamic
susceptibility atVt051024 for the bias fieldIH /K50.1 ~1!, 0.2
~2!, 0.3 ~3!, 0.5 ~4!. For figure~b! the curve withIH /K50.5 does
not resolve. Circles show the result of the effective time appro
mation.
-
-

r

where the static valuex0
(2) is defined in Eq.~10!.

The linear susceptibility plots of Fig. 3 may be looked
as a direct illustration of these conclusions. What is less
pected is that the effective time approach turns out to be v
efficient for the nonlinear response. The justification is giv
in Fig. 4, where we compare~similarly to Figs. 3! the qua-
dratic susceptibilities evaluated by the numerically ex
method and through Eq.~36!. All the numerical evidence we
have ~of which the presented graphical data is just a b!,
testifies to the effect that, except maybe for a rather nar
low-temperature range, the effective time approximat
rather closely follows the exact solution.

In the plots of quadratic susceptibilities given in Fig.
one can notice the same general features as forx. As for the
linear terms, the maxima ofx (2)8 andx (2)9 are comparable,
and one encounters the same tendency in the peak s
when the bias field is enhanced. Similarly to the relati
between Figs. 1~a! and 1~b!, the widths of the imaginary

i-

FIG. 4. Real~a! and imaginary~b! parts of the quadratic dy-
namic susceptibility atVt051024 for the bias fieldIH /K50.1 ~1!,
0.2 ~2!, 0.3 ~3!, 0.5 ~4!. For figure~b! the curve withIH /K50.5
does not resolve. Circles show the result of the effective time
proximation.
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quadratic plots are smaller than those for the real parts.
Some final remarks on the concept of the effective rel

ation time. First, the principle by whichteff is defined may
be used to introduce similar effective relaxation parame
for perturbations of any higher symmetry as well. But t
dipolar case, asdM is, seems to be the most natural. Seco
the introduction ofteff does not simplify its evaluation. In
deed, according to Eq.~30!, to find the effective time, one
has to know the solution of the kinetic equation~14!. The
real gain is in the fact that, as soon asteff(s,j) is found, all
the dynamic response problems write very simply, mak
the obtained results compact and easy to analyze. Third
virtual presence of all the spectral terms in the effective ti
makes this approach much more adequate than the su
paramagnetic blocking model. In the latter, the effective
laxation time of magnetization is identified just with the i
verse of the decrementl1, which is smallest atj50. Such a
replacement reduces all the magnetic dynamics to the in
well transition, ignoring all the intrawell ones. Due to tha
the blocking model deviates significantly from the exact
lution in the low-temperature limit (s→`) in the absence o
the external field, and also ats;j.

IV. MAGNETIC STOCHASTIC RESONANCE
BY THE LINEAR RESPONSE THEORY

Let us first analyze the effect of the bias field on t
magnetic SR in the linear response theory approach.
latter was proposed in Refs.@30# and@31# and had consider
ably clarified the SR concept. The main idea of the line
response treatment is a direct use of the fluctuati
dissipation theorem which expresses the thermal~fluctua-
tional! power spectrumQn(v) of the magnetic moment o
the system, i.e.,magnetic noise, through the imaginary com
ponent of its linear dynamic susceptibility Imx52x9 to a
weak probing ac field of an arbitrary frequencyv as

Qn~v!5~2VT/v!x9~v!. ~37!

Note that all throughout our consideration we use the us
definition of x as the magnetic susceptibility of a unit vo
ume of the disperse system. Because of that, to keep up
the meaning of the fluctuation-dissipation theorem, in f
mula ~37! the total volumeV of the system is introduced. In
terms of the total numberN of the magnetic particles
V5N/c5Nv/f.

The spectral power density of regular oscillations induc
by a driving field of a frequencyV, i.e., thesignal in the
same terms is written as

Qs~v!5 1
2 pV2Hp0

2 ux~V!u2d~v2V!, ~38!

where Hp0 stands for the ac field amplitude. For any re
measurement, we get the spectral density in a certain fi
frequency bandwidthD of the signal detection, that may b
accounted for by replacing the delta function by the inve
of the bandwidth.

Upon settingv5V in Eqs. ~37! and ~38!, the signal-to-
noise ratio~SNR!, which is the main issue investigated in th
SR theory, may be presented as
-
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S5
Qs

Qn

5
pN

4t0DS IH p0

K
D 2

R~s,j,V!, ~39!

where the dimensionless functionR is introduced to take in
all the temperature, frequency, and bias-field strength dep
dences. Note that in the front factor we uset0 instead oftD
to entirely pass all the temperature dependence toR.

In the effective time approximation~29!, from Eqs.~37!–
~39! one has

R5s2At0 /teff , ~40!

revealing, in particular, the absence of the frequency dep
dence. For a zero bias field (j50) ands.1 one may set
teff'tN @see Eq.~17!# and recover the most simple relatio
@4,5# for the linear magnetic SR:

R5s2Aexp~2s!. ~41!

The exact functionR(s,j,V) in a wide range of its argu-
ments was investigated in Ref.@10# numerically. The method
used there, in terms of the present study, is the solution
the set comprising just Eqs.~22!, i.e., the linear framework.
The comparison has shown that the superparamagn
blocking model, i.e., the assumption that the system is ch
acterized by a single exponential interwell-passage t
;tN , is valid for asymptotic considerations such as Refs.@4#
and @5#, but is insufficient to find out certain details. In pa
ticular, Eq. ~41! fails to describe SNR in the zero
temperature limit (s→`, VtN@1), and cannot account fo
either the effect of a bias field or a finite probing frequen
value, see Eq.~40!.

In Figs. 5 we show~with the appropriate reduction o
units! the exact three-dimensional diagrams forQs , Qn , and
SNR as derived within the linear response approach fr
Eqs.~37!–~39!, respectively. Note that as the functions of t
bias field, bothQ terms are maximal atH50 and rapidly
decrease with its growth. However, from their sharp pe
located at almost the same point it is difficult to foresee
actual SNR behavior described by the functionR shown in
Fig. 5~c!. It turns out that its maximum is shifted conside
ably to the right~to higher temperatures! in comparison with
those of the susceptibilities, and the rates of change al
both axes are much smaller. Note also the massive l
temperature ‘‘shoulder’’ of anyR(T) curve caused by the
intrawell motions, see Ref.@10#. As the biasH grows, this
low-temperature plateau widens suppressing the maxim
of R(T) which leads to the disappearance of SR itself. T
transformation is completed when the bias field exceeds
value IH /K52 above which the potential curve assumes
one-well form.

The results of the effective relaxation time approximati
applied to evaluate SNR in the same linear response fra
work, i.e., by Eq.~40!, are shown in Fig. 6. One observes
good agreement with respect to the main cusp of the func
R(T). However, in the low-temperature range the existi
deviations from the exact solution@they do not resolve in the
susceptibility graphs of Fig. 3~a!# become noticeable, see th
relative positions of the dots and curve 3 for 1/s,0.1.

Finishing this section, we would like to formulate explic
itly the operational definition of the linear SR measureme
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that underlies the presented calculation. Namely, we supp
that, first, the equilibrium magnetic power spectrum~no driv-
ing ac field! of the system is measured at some frequencyV
after which the driving field would be applied. This quanti
is assumed to beQn , i.e., the noise. Then the probing a
field is switched on, and the magnetic power densityQ(V)
is recorded anew. The change in the power density produ
by the probing field is considered to be the signal, and
write

FIG. 5. Signal~a! and noise~b! power densities, and SNR~c!
for a superparamagnetic system in the linear response approx
tion. In the first two figures the vertical scales are chosen to re
only the susceptibility dependences which really matter. Namely
~a! (2T/V)x95Qn /V, see Eq.~37!; in ~b! 1

2 puxu25Qs /V2Hp0
2 , see

Eq. ~38!. In ~c! the SNR is characterized by the functionR, see Eq.
~39!. Numerically exact results for the low-frequency ca
Vt051024.
se

ed
e

Q~V!5Qn~V!1Qs~V!. ~42!

Since Qn is known from the previous measurement, t
signal-to-noise ratio is obtained as

S5~Q2Qn!/Qn . ~43!

V. NONLINEAR STOCHASTIC RESONANCE

In Sec. III we showed that the quadratic dynamic susc
tibilities of a superparamagnetic system display the temp
ture maxima which are more sharp than those of the lin
ones. If the maximum occurs as well at the temperature
pendence of the signal-to-noise ratio, this should be ca
the nonlinearstochastic resonance. However, prior to d
cussing this phenomenon, one has to define what shoul
taken as the signal-to-noise ratio in a nonlinear case.

We shall do this with the same kind of the operation
definition as in Sec. IV. Namely, we assume that each sig
to-noise value emerges as a result of a three-step ac
First, one decides on the frequencyV at which the test will
be performed. Second, at double of this frequency the n
spectral power density in the state with no driving field
evaluated yielding

Qn~2V!5~VT/V!x9~2V!, ~44!

@cf. Eq. ~37!#. The signal term may be derived directly from
the definition

Q5E
2`

`

^m~ t !m~0!&eivtdt. ~45!

Substituting there the magnetization expansion~24!, one ob-
tains

Q2Qn5Qs~V!1Qs~2V!

5 1
2 pV2@Hp0

2 ux~V!u2d~v2V!

1Hp0
4 ux~2!~2V!u2d~v22V!# , ~46!

a-
in
in

FIG. 6. Comparison of the numerically exact solution~solid
lines! and the effective time approximation~circles! with respect to
SNR in the linear response approximation;IH /K50.1 ~1!, 0.3 ~2!,
0.5 ~3!. Low-frequency case:Vt051024.
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6408 56RAIKHER, STEPANOV, GRIGORENKO, AND NIKITIN
where now two terms are field induced. Besides the one
linear origin (}Hp0

2 ), there appears a fourth-order one ste
ming from the quadratic response, and rendering theQ com-
ponent at the double frequency. Using the recipe~43! as a
model, we may define the quadratic SR as

S25@Q~2V!2Qn~2V!#/Qn~2V! . ~47!

To extract the dimensional parameters which do not

FIG. 7. Signal~a! and noise~b! power densities, and SNR~c!
for a superparamagnetic system at the doubled excitation freque
i.e., quadratic response. In the first two figures the vertical sc
are chosen to retain only the susceptibility dependences w
really matter. Namely, in~a! (T/V)x9(2V)5Qn(2V)/V, see Eq.
~44!; in ~b! 1

2 pux (2)(2V)u25Qs(2V)/V2Hp0
4 , see Eq.~46!. In ~c!

the SNR is characterized by the functionR2, see Eq.~48!. Numeri-
cally exact results for the low-frequency caseVt051024.
of
-

-

pend explicitly upon temperature, we rearrange the quadr
signal-to-noise ratio to the form

S25
pN

16t0D
S IH p0

K
D 4

R2~s,j,V!, ~48!

@cf. Eq. ~39!# which is in fact the definition for the function
R2. The latter we obtain through the numerically exact so
tion of the sets of equations~22! and ~23! and its further
substitution to Eqs.~25!. Note that in the front factor, as in
Eq. ~39!, we uset0 instead oftD to entirely single out the
temperature dependence.

In the effective time approximation described in Sec. I
one can derive the explicit expression

S25
pN

16t0D
S IH p0

K
D 4

B2s4t0

Ateff

1

11V2teff
2

. ~49!

Remarkable, that even in a simplified approach, such as
~49!, the quadratic SR turns out to be essentially freque
dependent.

The inherent feature of the quadratic SR under study
that the bias field is the sole cause of even harmonics in
spectrum. Due to symmetry considerations, they must va
at H→0. This means thatS2(j→0)50. In Eq. ~49! this
limit is ensured by the proportionality ofS2 to B. According
to the second of Eqs.~10!, the coefficientB consists only of
the odd equilibrium moments of the distribution~6!. Since
the function W0 is even in x at j50, the odd moments
vanish.

On the other hand, at sufficiently highH, the magnetiza-
tion of the system saturates. This deprives the magnetic
ment of any orientational freedom and eventually ‘‘freeze
it up. Thus,H→` must as well lead to a vanishing respon
at any harmonic. Under those circumstances, it is clear
the quadratic signal together with SNR, when plotted
functions of the bias field strength, should pass a maxim
The existence of a maximum both at the temperature dep
dence of the signal-to-noise ratioR2 ~SR at constantH) and
the occurrence of the above-described maximum at its b
field dependence, make it interesting to analyze the quad

cy,
es
ch

FIG. 8. Comparison of the numerically exact solution~solid
lines! and the effective time approximation~circles! with respect to
the quadratic SNR;IH /K50.1 ~1!, 0.3 ~2!, 0.5 ~3!. Low-frequency
case:Vt051024.
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56 6409NONLINEAR MAGNETIC STOCHASTIC RESONANCE: . . .
response above the whole field-temperature coordinate p
With the developed numerical approach this is easy to c
out, and in Figs. 7 we show the results of such a consid
ation for Qs(2V), Qn(2V), and R2. The 3D peaks of the
spectral density components definitely do not coincide. D
to that, the position and height of theR2 peak, i.e., the opti-
mized joint action of both dependences, may be found
merically. As Fig. 7~c! shows, it happens to be rather pr
nounced; see the contour lines at the base plane of the fig
The obtained form of the maximum ofR2 supports the ex-
pectation that quadratic SR must be sharper than the li
one, cf. Figs. 5~c! and 7~c!.

Figure 8 presents a selection of cross sections of the
plot R2 where we compare the exact solution with the effe
tive time approximation~49!. In the low-temperature rang
the deviations, although not resolved in the graph, are in
table. But they do not make the main issue of the pres
study. As to the quadratic SR proper, the agreement a
may be pronounced to be excellent.

CONCLUSIONS

A consistent study of the linear and lowest nonline
~quadratic! susceptibilities of a superparamagnetic syst
subject to a constant~bias! field is presented. The particle
comprising the system are assumed to be uniaxial and i
tical. The method of study is mainly the numerical soluti
~exact up to any given accuracy! of the kinetic ~Brown!
equation. In addition, a simple heuristic expression for
quadratic response is proposed. It uses the recently de
oped effective relaxation time approximation. The net res
.
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is a simple formula of a very good capability that is prov
by comparison with the numerical solution.

The application of a constant force~bias field! shifts the
position of the ordinary SR peak together with the anti
pated reduction of its height and sharpness. For the quad
SR the situation is more complicated. For it, the joint acti
of the thermal noise and constant bias results in the for
tion of a mountainlike surface over the plane of those para
eters. In other words, for each given value of the bias fi
there exists a unique value of the noise strength that m
mizes SNR and vice versa. The discovered effect can
useful, for example, for the evaluation of the parameters
bistable systems through susceptibility measurements. In
dition, it has to be taken into account when designing a
devices where the nonlinear SR is employed.

The studied quadratic SR of a superparamagnetic gra
caused by the interaction of the periodic excitation with t
thermal noise. However, there exists an analo
kBT→g\Ha , where Ha52K/I is the particle anisotropy
field, that outlines a passage from thermal to quantum fl
tuations. Thus, with certain caution, one may apply the
sults obtained to the nonlinear SR caused by the tunnel e
at T50.
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