PHYSICAL REVIEW E VOLUME 56, NUMBER 6 DECEMBER 1997

Nonlinear magnetic stochastic resonance: Noise-strengtitonstant-force diagrams
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Signal-to-noise properties of a periodically driven noisy magnetic bistable system—superparamagnetic par-
ticles with uniaxial anisotropy—are investigated in the framework of the Fokker-Planck equation solved both
analytically and numerically. The system is subject to a congtaa$ field that imparts even harmonics into
its low-frequency magnetic spectrum. A comparative study of the linear and quadratic susceptibilities and
stochastic resonancéSR) is carried out. We show that the quadratic SR is much sharper than the linear one
and unlike the latter is essentially frequency depend&#063-651X97)10411-1

PACS numbgs): 05.40:+j, 75.50.Tt, 05.45+b

INTRODUCTION der study for quite some time, see REI4] for a state-of-
the-art review.
The phenomenon called in a modern thesatthes sto- The meaning of the generic SR terms as applied to a

chastic resonancéSR) has by now shaped up into a general Single-domain superparamagnetic particdean assembly of
concept appealing to a great many researchers in diverdB0se is apparent. The dynamic variable is connected to the
fields. Having been taken into collective development, it ha®rientation of magnetic moment, the background noise is
proved to be rather fruitful. By now the number of papers onthermal and thus white, and the excitation is created by a
stochastic resonance is in the hundreds, and overall revieW€2k external harmonic magnetic fitth(t) = H poexp( ).
articles[1—3] are beginning to appear. The signal is the responding dynamic magnetizabibft) in

SR is a kinetic effect universally inherent to bistable orth€ direction ofH, and the signal-to-noise ratio is defined
multistable dynamic systems with white or color noise. Itstrough the spectral power densi®(w) of M(t) at some

main manifestation is the appearance of a maximum on thd'Ven frequency. We remark that from the experimental

noise intensity dependences of the signal-to-noise ratio in yiewpoint all the quantities |_nvolved can be feasibly mea-
Sured by conventional techniques.

T e e e . ReL 7] th Impriance of s constantfilposed o
o fhe system along its anisotropy axin the magnetic SR is
7expAU/D) of the system switching between energy joansirated. First quantitative results on this effect in a
minima; hereAU is the_ effective he|_ght of th_e energy barrler superparamagnetic particle assembly are given in [Rél.
separating the potential wells afdis the noise intensity. The “constant force”H enters the energy function as the
For the most part, magnetic systems are multistableierm — 4-H. For a uniaxial anisotropy, i.e., initially sym-
Therefore, the idea of the magnetic stochastic resonance hasetrical bistable system, the bias field removes the degen-
emerged in a natural way first as a theoretical md#e8]  eracy and makes the potential wells nonequivalent. The
(see also Ref[6]), shortly afterward supported by experi- gradual increase dfl enlarges this deformation and finally
mental evidencg7,8]. In Refs.[9] and [10], an accurate transforms a two-well potential into a one-well one.
approach to the magnetic SR in the framework of the linear The bias-field effect has two main aspects of interest.
response theory was developed. First, it considerably affects the usual SR behavior deter-
Micromagnetism as defined by Browt1] is the branch mined by the linear respondd (t) <exp({t). Second, the
of magnetic science that studies the properties of fine ferrobreak of symmetry adds even terms into the frequency con-
magnetic particles. For such particles in the size rand®  tent of M(t), which otherwise consists only of odd harmon-
nm the height of the internal magnetic anisotropy barrierics. Thus one gets an opportunity to examine a nonlinear
AU, is comparable to the thermal excitation strengifT.  response in its most simpléquadratic form M ®)(t)
Due to that, the magnetic momemtof a single-domain par- ocH,zJoexp(ZQt). The latter is the subject of our particular
ticle begins to spontaneously wander between twuaxial interest. Indeed, at least since the time of the boom in studies
cas@ or numerouscubic casganisotropy energy, minima  of spin glasses, it is well known—see, for example, Ref.
[12,13. This motion manifests itself as a magnetic relaxation[15]—that nonlinear susceptibilities make a much more sen-
with the characteristic time<exp(AU,/kgT), i.e., the well-  sitive tool to investigate static and dynamic properties of
known superparamagnetisphenomenon that has been un- magnetic assemblies than the linear ones.
The goal of this paper is to consistently study the nonlin-
ear SR in a system of identical single doméfso known as
*Corresponding author. fine or nanosiz¢ anisotropic ferromagnetic particles dis-
Electronic address: ylr@ylr.icmm.perm.su persed in a solid neutral matrix. This is done by a numeri-
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cally exact solution of the micromagnetiBrown) equation hereafter we set the Boltzmann const&gtto unity. The
which grants a complete allowance for both magnetodyypartition integral in Eq(2) is

namic and thermal noise effects. Besides its direct range of
application, the problem in question makes a case that con-
tributes to the understanding of the generic SR behavior of a
bistable system subject to a constant force. In this aspect our
results should be considered along with the general theorefo avoid any confusion later on, we remark that under
ical treatment of nonlinear SR given in RgE6] and particu-  adopted definitions, all the parameters, viz, £, and¢, are

lar predictions on the nonlinear behavior of optical bistableessentially non-negative.

systemg[17] and a Josephson junction shorted by a super- Expanding expressiof2) to second order ig,, one gets
conducting lood 18].

Actually, the body of the paper is divided into five sec- - 1+ gpx+(1/2)§px2
tions. The first two discuss the static susceptibility and the W(e)=W01+ 1(1/2) £2(x2 ;
details of the quadratic expansion of the time-dependent (ot (112)€,(x%)0
Brown kinetic equation, respectively. Thus, the relevant manere the brackets labeled with 0 denote the averaging over
terial parameters and all the necessary mathematical schemgs, «pasic state,” i.e., the distribution
are introduced and explained. In Sec. lll, the obtained frame-
work is used to derive, calculate, and analyze the set of the WO(X):zalexr(gx2+ éx),
dynamic susceptibilities, linear and quadratic, which are the
basic quantities to deal with SR. Also, with the concept of 1
the effective relaxation time, we propose a simple expression Zo((f,g):zﬂf explox?+ £x)dx. (6)
for the quadratic susceptibility, and give its justifications. In -t
Sec. IV, in terms of the dynamic susceptibility the properties  gqr an assembly of identical noninteracting particles, that

of the linear magnetic SR in a bias field are discussed. IR oy model, the longitudinal magnetization assumes the
Sec. V, we formulate the definition for a nonlinear SR andgy, M —cu(x), i.e., a single-particle contribution times
present the dependences of the magnetic quadratic SR on t}Eﬁrticle number concentratian Here the unlabeled angular
temperature and the bias field strength. By comparison withy 5 c1ets denote the averaging with the distribution function

the numerical results, we show that for the most part of tth from Eq.(2). When the perturbingprobing field is weak
range of interest, the approximate expression of Sec. hne may present the magnetization as '
works very well. When used, it yields the signal-to-noise
ratio in a compact form, revealing all its essential tempera- M —Mo(H)ZXHerX(Z)H,Z), Mo(H)=cu(X)o, (7)
ture, bias-field, and frequency dependences.

1
Z(a,g,gp)=27-rfilexp[ox2+(§+§p)x]dx. (4)

(5

thus introducing, along with the customary susceptibility
|. STATIC QUADRATIC SUSCEPTIBILITY the qua}dratic ong(?. Note thqt owing to the magnetization
saturation,x(®?> must be negative.
In the presence of a probing field, and a constant bias On the other hand, using expansi@), one gets the rep-
field H, the orientation-dependent part of the energy functiorresentation
of a single-domain ferromagnetic grain is
(x)=(X)o+ &gl (**)o— (X)5]

U=—Ko@R -pl@H)+@H)L @ F3E(P0=3() o0+ 2(03]. (®

wheree andn are the unit vectors of the particle magnetic From Egs.(5)—(8) explicit relations follow:
moment and anisotropy axis, respectivéiyijs the effective

anisotropy constantessentially positive for the easy-axis Xo=(PI1K)oA, A(£,0)=(x®)o—(X), )
case, andu=Iv is the magnitude of the magnetic moment
of a single-domain particle with being its magnetization, X&' =(1°/K?) 0B,
andv its volume.
We focus on the longitudinal situation and assume that B(&,0)=3[(x®)0—3(x®)o(X)o+2(x)3] . (10)

the imposed fields are collinear and directed along the an-
isotropy axisn. Then the set of the angular variables reducediereatfter, instead of the number concentratothe dimen-
to the polar angled of & with respect ton. Setting Sionless particle volume fractioh=cv is used. Note that by
cosd=(&-n)=x, at H,=const for the equilibrium distribu- definition
tion function of the particle magnetic moment one gets _ 1 5
A= 3(x)old€, B=20%(X)olI%E. (11)
W(8) =W(x)=Z""ex ox*+ (£+ £p)X], 2 In limiting cases, simple expressions for the coefficights
and B are available. For high temperatures,£<1) one
where the values of the internénisotropy and external finds
magnetic energies are scaled with the thermal energy
A=(5+350)— (& + Ho0) €%, B=—(i+mom0)E.
o=Kv/T, {=uHIT, &=uH,/T; 3 (12
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(Kol % their axes completely aligned. As the field strength grows,
the maxima of the curves move to higher temperatures. A
qualitative explanation for this shift may be obtained from
Eg. (13). We note that the field strongly affects the tempera-
ture behavior of the coefficie®;,- At H=0 the interwell
contribution is unity and entirely dominatég,,,. Then Eq.

(a) (9) gives yx g 1/T, i.e., the Curie law shown by a dashed

line in Fig. 1(@). For H#0, the termA;,, in Eq. (13) ac-

quires an exponential factor. Then, on the temperature de-
crease, an abrupt fal e exp(—2¢) takes place. Foy it
means that the Curie law gives up, yielding a characteristic
maximum. Sinceé=uH/T, the higher is the field, the
greater is the temperature of the maximum. With further
cooling, Ayer becomes negligible, and the control on the
behavior of y is overtaken byA;.. The occurring

(Kol x¥ crossover—from the exponential to the power law in

4 1/T—manifests itself as an inflection point at the leftmost

0 —e parts of the curves in Fig.(d4). The same qualitative ten-

dency holds for the quadratic static susceptibilities, see Fig.

2 1(b).

-50 A The discussed static responses are determined for the

(b) complete equilibrium. Due to this, they are the easiest to
calculate but not at all easy to observe. Indeed, at low tem-
peratures the time needed to achieve the interwell equilib-

] rium becomes exponentially larg21].

0.0 0.2 0.4 0.6 0.8 1.0

-100 A

II. QUADRATIC EXPANSION OF THE TIME-DEPENDENT
DISTRIBUTION FUNCTION

-150 Voe<T

0.0 0.1 0.2 0.3 I L . .
In a nonequilibrium situation, evolution of the distribution

functionW(g,t) is governed by the rotary diffusiofFokker-
Planck-like equation. In the 1960’s Browf22] specified it
for micromagnetidfine particlg systems. He did this on the
basis of the well-known phenomenological Landau-Lifshitz-
Gilbert (LLG) equation which describes the magnetodynam-
h:s of a single-domain particle in the absence of thermal
uctuations. In a compact vector form the Brown kinetic

equation is writterj 23]

FIG. 1. Static lineafa) and quadrati¢b) susceptibilities for the
bias fieldIH/K = 0.05(1), 0.1 (2), 0.2 (3), 0.5 (4). Broken line
shows the limiting behavior foH =0. Note the factor of 3 differ-
ence between the abscissa scales of(dhand (b) plots.

The low-temperature asymptotics was obtained by Garani
[19]. Namely,

1 (2048 1
cosRe (20=§)  (20+¢)?

A=Aert Ainra= 27pdW/9t=IWI(U/T+InW), (14
wherelJ is the operator of infinitesimal rotations with respect
for 20— &>1, (13)  to the components d, the energy functiot is defined, for
example, by Eq(1), andrp= T~ 1 is the reference time of the

and the corresponding may be found with the aid of defi- internal rotary diffusion of the particle magnetic moment.
nitions (11). The two terms of the right-hand side of E43)  The conventional representation for the diffusion time is
have clear meanings. The first one is caused by redistribution
of the particle magnetic moments between the potential Tp=0Ty, To=I/2ayK, (15
minima located atx=*1. It may be called thanterwell
contribution. The other is thmtrawell one, and it accounts where vy is the electron gyromagnetic ratio. Herg is de-
for the field-induced orientation inside the deeper welll,  fined through the precession damping parameteof the
where até>1 virtually all the magnetic moments dwell. underlying LLG equation; see RdR4], for example. Quali-

According to Eq.(8), the quadratic term is determined by tatively, 7, accounts for the damping effect of the spin-lattice
the odd-rank moments of the equilibrium distribution func-interactions on the orientational motion@fTherefore,ry is
tion, and is absent if the latter is even xn Thus, for the the material parameter of a particular system. For us, it yields
existence ofy(?) the presence of a bias field in E(l) is the decay rate for the intrawell processes, i.e., those occur-
mandatory. Otherwise, the next-to-linear response terming near the bottom of the potential wells bf(x). In the
would be cubic in the probing field amplitude, see REI§],  presence of the bias field, the intrawell relaxation time modi-
for example. fies to

In Fig. 1 the results of numerical evaluation of static
and y(® are given for an assembly of uniaxial grains with Tinra= To( 1+ 1H/2K) L. (16)
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The thermal noise strongly affects the relaxation pro-where c.c. stands for complex conjugates. On substituting
cesses in the superparamagnetic system. At high tempertiis expansion into Eq(20), one gets the equation for the
tures, when the presence of the potential wells is insignificomplex amplitudes
cant (c=<1), the magnetization relaxation time directly 1(1+1)

. . . _ . . . _l’_ B B
coincides withry , see Eq(23). In the low-temperature limit 2|erDb}k)+E A|,|rb,(3()=§po [b(k 1_pk 1)1'

|/

(o>1), the magnetization reversal takes the form of inter- 2141 -1t I+1
well transitions, and its rate is described by theeNelation (22

™= TpeXp(T), (17)  valid for the perturbations(M= & from Eq. (21). The op-
eratorA in Eq. (22) is the pentadiagonal relaxational matrix

with 75 playing the role of the preexponential factor. The whose definition follows from E¢(20). As usual, the right-
time 74 is of a dynamic, not diffusion, origin, and due to that hand side of Eq(22) contains the result of the preceding
does not depend explicitly upon temperature. It makes it deration.
convenient noise-independent time scale. Theny, One remark concerning the zeroth order is worthwhile.
emerges as a natural criterion with regard to which frequencfhere one deals with the equilibrium quantitig®) which
Q) should be considered to be either high or low. For ferro-can be found from the equation
magnetic particles the reference values 7gf are usually
taken[24—-26 as 10 1°-10° s. Hence, all the frequencies

up to the range of at least several MHz may be treated as IE Arir{Pir)o=0. @3
being low.
Let us assume that the probing figtt} varies harmoni- Its nontrivial solution is provided by the identity,)o=1.
cally, The corresponding term may be passed to the right-hand side
‘ . of Eq. (23) thus making this equation nonhomogeneous. In
Hp=3Hpo(e' M +e 1), (18)  all the higher perturbation orders{®=0 identically.

The sets of the pentadiagonal recurrence relati@as
and seek the solution of the uniaxial Brown equalﬂm) in and (23) truncated at some |arge enoug:hz N, are solved
the form of a series numerically with the aid of the generalized Thomas algo-
rithm, see Ref[27], for example. Using this algorithm for
backward sweeping, that is, from tail to head, yields a pro-
cedure which, being in fact equivalent to the continued-
fraction method proposed by Risk¢B8], is more feasible
where (P,), with P, being the Legendre polynomial, is in for realization. Both methods provide any desired accuracy
fact a conventional notation for the expansion coefficients|ust by varying the cutoff index numbe\. In this sense we
As has been mentioned, we restrict ourselves to the lowcall the solutions obtainedumerically exact
frequency conditio) 7p<<1. In this limit, the Larmor pre-
cession of the particle magnetic moment may be neglected, . DYNAMIC SUSCEPTIBILITIES
and Eq.(14) describes a well-overdamped angular oscillator
in the bistable potentiall).

Substituting Eq(19) into Eq. (14), and then integrating
over & one arrives at the pentadiagonal set of differential
recurrence relations for the mean Legendre polynomials:

1o 2+1
X’ =5 5 | |X!
Wt =5 -2 =5 —(P)Pi(X) (19

The numerically exact solution of Eq2) and(23) de-
termines the representation for the distribution funciib®)
accurate up t@f,o. Using it in the reduced magnetizati¢x)
definition and with allowance for Eq7), one can present the
magnetic response as a sum of the frequency-dependent con-

d (I-DI(1+1) tributions as
270 g (PO HIU+10(P) = 20| = 5y (Pi-2) M=Mo-+ 2x(Q)Hpoexpli 01) + 2 x2(20) H2pexp( 2i 1)
1(1+1) 1(1+1)(1+2) +ecc., (24)
R AR T T e AR,
thus specifying the linear and quadratic complex susceptibili-
[(1+1) ties
—(§+fp)m[<P|—1>—<P|+1>]=0- (20)

2 2

o _ _ _ ¢! L X<2):¢'3‘T b2
Taking into account that the dimensionless amplituge K ¢ Kz 1t
[see scaling3)] of the probing field is small, the response of
the periodically driven system may be found by the pertur-Each of them is a function of the bias fiefdand describes
bation method. To be able to obtain the quadratic susceptthe harmonic of magnetization at the pertinent frequency.
bility, we have to perform the pertinent calculation up to theNote that in Eq.(24), as in Eqg.(21) above, we omit the
second order i . Dealing with the harmonic fieldl8), we  stationary contribution tg(2).

(25

introduce the time-independent complex amplitudes as To facilitate understanding, let us recall the main features
_ . of the linear longitudinal susceptibility of a superparamag-
P)—(P))o=3(bVe+c.c)+1(b?e?yc.c), netic system. The general solution of the linear prob{gg
[ 170 | |

(21 can be formally presented as the spectral expansion



6404 RAIKHER, STEPANOV, GRIGORENKO, AND NIKITIN 56

/T

eff’ "D

W
: we=1 (29 .
1 10°

o) o0 ‘c
X=X 2 YN,
% 14210, E
106_

where the sets of the eigenvalus,} of the relaxational o
N 104

operatorA are introduced together with the weighfe, } R
rendering the contributions of the eigenmodes to the linear 107
susceptibility. In Eq(26) A is the lowest eigenvalue, andit 1
is the only one that yields the rate of the interwell relaxation.
The corresponding relaxation time reads

0
Tinter= 270/ N1 27 0.2
0
On the other hand, one can try to approximate the mag- ~ 08 03 02
netization damping process by a single effective relaxation Y 04 ’
time as ° IHIK
Y=xo(1+ iQTeff)il. (28) FIG. 2. Integral relaxation time as a function of the dimension-

less temperature &/and bias field strength/o.
In the low-frequency limit the exact and approximate suscep-
tibilities must coincide. Matching the expansions of Egs.At ¢=0 and 14<1 it reduces tory, where the Nel relax-

(26) and(28) for Q7p<1, yields ation time is defined by Eq17). This yields the customary
% superparamagnetic blocking model with its exponential in
Toft= E Wi, Te=27p A (29) T behayior. A peculiar feature is the occurrence of a non-

k=1 monotonic dependence(1/o) whenlIH/K exceeds some

) o o o finite value. This fact was discovered in Rdf29] and[19],
The last relationship is in fact the quantitative definition of \yhere the evaluation gaviH/K~0.34. Remarkably, the
Tetr. HOWever, in practice it is more feasible to fiagh from  gimjjar inflection on the curves7 /N takes placé21] only
the solution of the recurrence relati¢9, 29 at IH/K close to 2. This gives a strong direct argument in
favor of usingre;, and not Zp/\; as the effective relax-

2 Ay Fr=215((PiP1)o—{P)o{P1)o) (30) ation time for the magnetization.

I The temperature dependencesydfand x” found by the
full numerical procedurgEgs.(21)—(25)], and with a simple
formula (28) but a numerically exactr.;, are given and
compared in Fig. 3 fof)7,=10" 4. We remark that the ac-
tual choice of() does not matter as long as we deal in the
(31) low-frequency range. However, the assumed value seems

quite reasonable, since aj~10 ° s it corresponds to the

In the low-temperature limit, Garanji9] found a simplified ~ dimensional frequency-10* Hz that is a convenient mea-

aster=Fq/A.
For high temperatureso({<<1) the effective relaxation
time of Eq.(29) reduces to

Teff— 7D -«

expression surement range.
As one can see from Fig. 3, the agreement is rather good.
Ter= A~ (AinterTintert AintraTintra) (32)  Among all, this implies that in the low-frequency domain

_ one can propose a closed equation of the magnetization mo-
where the parameterd are defined by Eq(13), and the tjgn

temperature-independent timg;, is introduced by Eq(16).
The corresponding asymptotic form of the interwell relax-

T . ) d
ation time(27) is provided by the formula (Teﬁﬁ+ 1|(M=Mg)=xoHp, (34)
N=7 Y203 1-h?){(1+h)exd —o(1+h?)]
+(1—h)exgd —o(1-h)]}, (33)  Wherey, is defined by Eq(9).
From Fig. 3 it follows that the presence of a bias field
obtained by Aharonf21]; hereh=1H/2K. shifts the maxima of in- and out-phase componenty drfi

In Fig. 2 we present the plot of, obtained from the opposite ways: the peaks of the real part move to the higher
numerical solution of Eq30). The coordinates used for this noise strength region, whereas those of the imaginary parts
schematic representation are the dimensionless temperatuidisplay the reversed tendency. The behavior of the real part
independent magnetic field/ o=IH/K and dimensionless does not differ much from that of the static susceptibility;
temperature If. Note also the logarithmic scale of the ver- this is natural since th€ =, parameter is small. That is, we
tical axis. The plateau at<2 shows that at enhanced tem- observe the dependence of the fackoon ¢ described when
peratures the relaxation time does not depend on the detaitBscussing the static case. The imaginary part of the suscep-
of the potential. At low temperatures, the effective time istibility possesses an additional facte() 7. and thus they”
strongly temperature dependent. The form of the surfage behavior is governed by the lowest barrier height, which
in the bandor=5, i.e., reduced temperatures, is very specific.goes down as the bias field grows.
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(K*fol ) x””

0
-5
-10 ~
-15 A
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(K*Jor ) %P
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b
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FIG. 3. Real(a) and imaginary(b) parts of the linear dynamic
susceptibility atQ 7,=10"* for the bias fieldlH/K=0.1 (1), 0.2
(2), 0.3(3), 0.5(4). For figure(b) the curve withlH/K=0.5 does
not resolve. Circles show the result of the effective time approxi- lV/GeT
mation. 220 . . . . |
0.0 0.1 0.2 0.3 0.4 0.5

From the general viewpoint, the ability of a relationship

such as Eq(34) to describe the higher harmonics of magne-
tization is questionable. However, at least for semiquantita

tive results, one can obtain a useful approximationf&?.
For that, let us rewrite Eq34) as

oM

(M=Mg)=H,—, (35)

d
Teﬁa'Fl

which actually means replacing, by M. Setting in accor-
dance with Eq(24)
M=Mgy+ M+ M2,

M= xo(1+iQ7e) " *H,, SMP~HZ,,

FIG. 4. Real(a) and imaginary(b) parts of the quadratic dy-
namic susceptibility a€ 7,=10"* for the bias fieldH/K=0.1(1),
0.2 (2), 0.3(3), 0.5 (4). For figure(b) the curve withiIH/K=0.5
does not resolve. Circles show the result of the effective time ap-
proximation.

where the static valug(?) is defined in Eq(10).

The linear susceptibility plots of Fig. 3 may be looked at
as a direct illustration of these conclusions. What is less ex-
pected is that the effective time approach turns out to be very
efficient for the nonlinear response. The justification is given
in Fig. 4, where we compargimilarly to Figs. 3 the qua-
dratic susceptibilities evaluated by the numerically exact
method and through E@36). All the numerical evidence we
have (of which the presented graphical data is just 3, bit

from Eq. (35 one gets the equation for the second-ordentestifies to the effect that, except maybe for a rather narrow

correction:

d a
(reﬁaﬂ 5M(2)=Hpm5M(1),

that finally yields

X =xPI(1+iQ7e)(1+2iQ7e)] L (36)

low-temperature range, the effective time approximation
rather closely follows the exact solution.

In the plots of quadratic susceptibilities given in Fig. 4
one can notice the same general features ag.féss for the
linear terms, the maxima of(®’ and x(?” are comparable,
and one encounters the same tendency in the peak shifts
when the bias field is enhanced. Similarly to the relation
between Figs. () and 1b), the widths of the imaginary
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quadratic plots are smaller than those for the real parts. Q aN [ 1H 2
Some final remarks on the concept of the effective relax- === 7 A(_p) R(o,&,Q), (39
ation time. First, the principle by which.; is defined may Qn o K

be used to introduce similar effective relaxation parameters

for perturbations of any higher symmetry as well. But theWhere the dimensionless functidhis introduced to take in
dipolar case, asM is, seems to be the most natural. Secondf"" the temperature, frequency, and bias-field strength depen-

the introduction ofr.; does not simplify its evaluation. In- dences. Note that in the front factor we ugginstead ofrp
deed, according to Eq30), to find the effective time, one (© entirely pass all the temperature dependende. to

has to know the solution of the kinetic equatiti¥). The In the effective time approximatio29), from Eqs.(37)—
real gain is in the fact that, as soonag(o, £) is found, all (39 one has
the dynamic response problems write very simply, making

the obtained results compact and easy to analyze. Third, the

virtual presence of all the spectral terms in the effective timerevealing, in particular, the absence of the frequency depen-
makes this approach much more adequate than the supance For a zero bias field€0) ando>1 one may set
paramagnetic blocking model. In the latter, the effective re-_ «~ 1 [see Eq(17)] and recover the most simple relation
laxation time of magnetization is identified just with the in- [2 5] for the linear magnetic SR:

verse of the decrement;, which is smallest af=0. Such a ’

replacement reduces all the magnetic dynamics to the inter- R=o2Aexp — o). (41)
well transition, ignoring all the intrawell ones. Due to that,

the blocking model deviates significantly from the exact so- The exact functiorR(¢,£,Q) in a wide range of its argu-

lution in the low-temperature limit¢— ) in the absence of ments was investigated in R¢10] numerically. The method

R=0?A7y/ Tef, (40

the external field, and also at~¢. used there, in terms of the present study, is the solution of
the set comprising just Eq§22), i.e., the linear framework.

IV. MAGNETIC STOCHASTIC RESONANCE The comparison has shown that the superparamagnetic

BY THE LINEAR RESPONSE THEORY blocking model, i.e., the assumption that the system is char-

acterized by a single exponential interwell-passage time

Let us first analyze the effect of the bias field on the~ 7y, is valid for asymptotic considerations such as Rf.
magnetic SR in the linear response theory approach. Thand[5], but is insufficient to find out certain details. In par-
latter was proposed in Refl30] and[31] and had consider- ticular, Eq. (41) fails to describe SNR in the zero-
ably clarified the SR concept. The main idea of the lineatemperature limit §— o, Qry>1), and cannot account for
response treatment is a direct use of the fluctuationeither the effect of a bias field or a finite probing frequency
dissipation theorem which expresses the therfflactua-  value, see Eq(40).
tional) power spectrunQ,(w) of the magnetic moment of In Figs. 5 we show(with the appropriate reduction of
the system, i.emagnetic noisgthrough the imaginary com- units) the exact three-dimensional diagrams @y, Q,, and
ponent of its linear dynamic susceptibility = —x” to @ SNR as derived within the linear response approach from

weak probing ac field of an arbitrary frequeneyas Eqgs.(37)—(39), respectively. Note that as the functions of the
bias field, bothQ terms are maximal ai=0 and rapidly
Qn(w)=(2VT/w)x"(w). (37) decrease with its growth. However, from their sharp peaks

located at almost the same point it is difficult to foresee the

Note that all throughout our consideration we use the usu <_:tua| SNR behavior described by the functRrshown in

definition of y as the magnetic susceptibility of a unit vol- ig. S(c). [t turns out that its maximum is shifted consider-

ume of the disperse system. Because of that, to keep up Wif;?rfly to tfh?hright(to hi%gﬁ.i_tempe:jatﬁ]rem ;:ompfariﬁon Withl
the meaning of the fluctuation-dissipation theorem, in for- ose of the susceptibilities, an € rates of change along

mula (37) the total volumeV of the system is introduced. In :)Oth aX(tas ar‘(‘a hmulcdh ima}:ller. Ngte also the mgsgm:hlow-
terms of the total numbeN of the magnetic particles tlemperaturé “shoulder o anR(T) curve caused by the
V=N/c=Nu/¢. intrawell motions, see Refl10]. As the biasH grows, this

The spectral power density of regular oscillations inducedow-tempergture plateau wiqens suppressing thg maximl_Jm
by a dri\?ing fielpd of a frequgncy) gi.e. thesignal in the of R(T) which leads to the disappearance of SR itself. This
same terms is written as ' ' transformation is completed when the bias field exceeds the

value IH/K=2 above which the potential curve assumes a
1 22 ) one-well form.
Qs(@) =37V Ho [ x(Q)[*5(0—Q), (38) The results of the effective relaxation time approximation
applied to evaluate SNR in the same linear response frame-
whereH o stands for the ac field amplitude. For any realwork, i.e., by Eq.(40), are shown in Fig. 6. One observes a
measurement, we get the spectral density in a certain finitgood agreement with respect to the main cusp of the function
frequency bandwidtiA of the signal detection, that may be R(T). However, in the low-temperature range the existing
accounted for by replacing the delta function by the inverseadeviations from the exact solutigthey do not resolve in the
of the bandwidth. susceptibility graphs of Fig.(8)] become noticeable, see the
Upon settingw= ) in Egs. (37) and (38), the signal-to- relative positions of the dots and curve 3 for#0.1.
noise ratio(SNR), which is the main issue investigated in the  Finishing this section, we would like to formulate explic-
SR theory, may be presented as itly the operational definition of the linear SR measurements
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FIG. 6. Comparison of the numerically exact solutitsolid
lines) and the effective time approximatidnircles with respect to
SNR in the linear response approximatioH;/K=0.1 (1), 0.3 (2),
0.5 (3). Low-frequency casef) 7o=10"*.

Q(2)=Qn(2) +Q(Q2). (42

Since Q, is known from the previous measurement, the
signal-to-noise ratio is obtained as

S=(Q—Qn)/Qn. (43)
R (©) V. NONLINEAR STOCHASTIC RESONANCE
067 In Sec. lll we showed that the quadratic dynamic suscep-
Wﬁ’“ tibilities of a superparamagnetic system display the tempera-
04 1 /’0@/&% ture maxima which are more sharp than those of the linear

HYd
/0.,

/
7

o ones. If the maximum occurs as well at the temperature de-
I/

pendence of the signal-to-noise ratio, this should be called
the nonlinearstochastic resonance. However, prior to dis-
cussing this phenomenon, one has to define what should be
taken as the signal-to-noise ratio in a nonlinear case.

We shall do this with the same kind of the operational
definition as in Sec. IV. Namely, we assume that each signal-
to-noise value emerges as a result of a three-step action.
First, one decides on the frequenQyat which the test will
be performed. Second, at double of this frequency the noise
spectral power density in the state with no driving field is
evaluated yielding

5
02 %

0 0.2 0.4 0.6 08
1/GoT

FIG. 5. Signal(a) and noise(b) power densities, and SNR)
for a superparamagnetic system in the linear response approxima-
tion. In the first two figures the vertical scales are chosen to retain
only the susceptibility dependences which really matter. Namely,
(@ (2T/Q)x"=Q,/V, see Eq(37); in (b) 37| x|*= Qs/V2H3,, see
Eq. (38). In (c) the SNR is characterized by the functiBnsee Eq.
(39. Numerically exact results for the low-frequency case

Q7=10"* Q= f (m(t) u(0))e'etdt, (45)
that underlies the presented calculation. Namely, we suppose

that, first, the equilibrium magnetic power spectrmo driv-  Sybstituting there the magnetization expang@2#, one ob-
ing ac field of the system is measured at some frequeficy tains

after which the driving field would be applied. This quantity

Qn(2Q)=(VTIQ)x"(200), (44)

ir[cf. Eq. (37)]. The signal term may be derived directly from
the definition

is assumed to b€, i.e., the noise. Then the probing ac Q- 0Q,=0QQ)+Q20)
field is switched on, and the magnetic power den§i)
is recorded anew. The change in the power density produced =3V HZ | x(Q)[*8(w— Q)

by the probing field is considered to be the signal, and we
write +Hoolx?2Q)PP8(w—2Q)], (46
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FIG. 8. Comparison of the numerically exact solutitsolid
lines) and the effective time approximatignircles with respect to
the quadratic SNRIH/K=0.1(1), 0.3(2), 0.5(3). Low-frequency
case:Qr,=10"%.

1000

500

pend explicitly upon temperature, we rearrange the quadratic
signal-to-noise ratio to the form

IHoo\*
T"" Ry(0,£,Q), (48)

_7TN
16TOA

IH/K

[cf. Eq. (39)] which is in fact the definition for the function
R,. The latter we obtain through the numerically exact solu-
tion of the sets of equation®2) and (23) and its further
substitution to Eqs(25). Note that in the front factor, as in
Eq. (39), we user, instead ofrp to entirely single out the
temperature dependence.

In the effective time approximation described in Sec. I,
one can derive the explicit expression

N [IHy\ ‘B2t 1
16rAl K | Argg 140272,

(49

Remarkable, that even in a simplified approach, such as Eq.
(49), the quadratic SR turns out to be essentially frequency
dependent.

The inherent feature of the quadratic SR under study is
that the bias field is the sole cause of even harmonics in the
FIG. 7. Sianal d noise(b densiti d SN spectrum. Due to symmetry considerations, they must vanish
forasﬁpérpa:?;riegg)n:trilc sr;/c:tseer(n )atptc;lvgeéouf)rllescldli(’:i?;ion frg;)uencat H._>0' This means tha82(§—>0)=0. In Eq. (49 this
. ; . : . Hmit is ensured by the proportionality &, to B. According
i.e., quadratic response. In the first two figures the vertical scale . .
are chosen to retain only the susceptibility dependences whicE:) the Seconq' Of. Eqs10), the coeff|C|enlB C.0nS.IStS only of
really matter. Namely, i@ (T/Q)y"(2Q) =Q,(2Q)/V, see Eq. e odd equilibrium moments of the distributi¢6). Since

(44); in (b) %Wlx(z)(ZQ)|2=Qs(20)/V2H30, see Eq.(46). In (0) the functionW, is even inx at £&=0, the odd moments

the SNR is characterized by the functiBg, see Eq(48). Numeri- vanish. o ) )

cally exact results for the low-frequency cale,=10"*, ~ On the other hand, at sufficiently hidh, the magnetiza-
tion of the system saturates. This deprives the magnetic mo-

where now two terms are field induced. Besides the one ofnent of any orientational freedom and eventually “freezes”

linear origin (H2y), there appears a fourth-order one stem-it Up- Thus,H— < must as well lead to a vanishing response

ming from the quadratic response, and renderingQrmm- at any harmonic. Under those circumstances, it is clear that

ponent at the double frequency. Using the redi® as a the quadratic signal together with SNR, when plotted as

model, we may define the quadratic SR as functions of the bias field strength, should pass a maximum.
’ The existence of a maximum both at the temperature depen-
S,=[Q(20)—Q,(20)]1/Q,(29)) . (47) dence of the signal-to-noise ratity (SR at constanil) and

the occurrence of the above-described maximum at its bias-
To extract the dimensional parameters which do not defield dependence, make it interesting to analyze the quadratic
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response above the whole field-temperature coordinate planis.a simple formula of a very good capability that is proved
With the developed numerical approach this is easy to carrpy comparison with the numerical solution.
out, and in Figs. 7 we show the results of such a consider- The application of a constant fordbias field shifts the
ation for Q4(2Q), Q,(2Q), andR,. The 3D peaks of the position of the ordinary SR peak together with the antici-
spectral density components definitely do not coincide. Dugpated reduction of its height and sharpness. For the quadratic
to that, the position and height of th® peak, i.e., the opti- SR the situation is more complicated. For it, the joint action
mized joint action of both dependences, may be found nuef the thermal noise and constant bias results in the forma-
merically. As Fig. Tc) shows, it happens to be rather pro- tion of a mountainlike surface over the plane of those param-
nounced; see the contour lines at the base plane of the figureters. In other words, for each given value of the bias field
The obtained form of the maximum &, supports the ex- there exists a unique value of the noise strength that maxi-
pectation that quadratic SR must be sharper than the lineamizes SNR and vice versa. The discovered effect can be
one, cf. Figs. &) and 7c). useful, for example, for the evaluation of the parameters of
Figure 8 presents a selection of cross sections of the 3bistable systems through susceptibility measurements. In ad-
plot R, where we compare the exact solution with the effec-dition, it has to be taken into account when designing any
tive time approximation(49). In the low-temperature range devices where the nonlinear SR is employed.
the deviations, although not resolved in the graph, are inevi- The studied quadratic SR of a superparamagnetic grain is
table. But they do not make the main issue of the presemtaused by the interaction of the periodic excitation with the
study. As to the quadratic SR proper, the agreement agaithermal noise. However, there exists an analogy

may be pronounced to be excellent. kgT— yAH,, where H,=2K/I is the particle anisotropy
field, that outlines a passage from thermal to quantum fluc-
CONCLUSIONS tuations. Thus, with certain caution, one may apply the re-

_ _ _ sults obtained to the nonlinear SR caused by the tunnel effect
A consistent study of the linear and lowest nonlineargt T=0.

(quadrati¢ susceptibilities of a superparamagnetic system
subject to a constar(biag field is presented. The particles

c_omprising the system are gssumed to be unia?<ial and i'den— ACKNOWLEDGMENTS
tical. The method of study is mainly the numerical solution
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